There is a century-old tree at the end of my street. Right before you get to the graveyard with its wrought-iron gates. That tree saw my grandmother play in the street when she was a little girl. It saw her ride the train to the college, carry groceries in a paper sack. The tree — I don’t know its name — it saw my da walk across town — from school to that house on Broad, when they used to live there. It can see my great-grandfather’s grave right now — it’s tall enough. He built this house in 1921. They say he was a drunk. The floor slants a little and the window frames aren’t square. He built the other houses on our block, too. Before he built them, it was just this house and greenhouses. The greenhouses were filled with roses. The whole neighbourhood used to smell like roses. At some point they used to call this Rose City, even though there’s a meatpacking factory only two kilometres away.

 

They also say he could multiply long numbers in his head, without any paper. Now this house is holding a different kind of “family”. I can’t even say it’s a modern one. More like a gathering of moneyless relations. Ambitious failures; I sometimes wonder what the house thinks of us. It’s certainly used to the self-help books — Latin; Linux; teach yourself guitar. The trains in this town used to carry passengers. They took my grandmother to the teacher’s college. My da must have walked past this graveyard a thousand times. No, more — maybe even ten thousand. I walk in the graveyard every day. The tree sees me. My favourite is when it’s snowy. Some of the graves announce strange names. A woman named Ruby. She would be 136 now. A man named Forthright. Apparently the brothers who lie beneath the massive Romanesque columns at the highest point in the graveyard invented a transport that was used massively during the War. You can see most of the town standing among those columns. Past the roads there’s a small forest, beyond that farms.

I’m thinking about my path γ(t) versus the tree’s λ(t). Neither of us can be everywhere at once. We’ve stood at or around the same spot often enough. But every time I’ve gone “adventuring”, I haven’t seen what’s happening in λ(t). Is the small-town life “worse” than the jet-setter lifestyle? It depends what functional you convolve against γ(t). I don’t like repetitiveness, but maybe what the tree has seen isn’t so repetitive. Two World Wars. The rise of feminism. A time before plastic, a time before tarmac, a time when white supremacists would parade through the streets. My grandmother recognised someone’s shoes and shouted his surname; her mother covered her mouth. The tree saw her in most stages of life.

On we go, hurtling through spacetime. The speed of γ equals the speed of λ. From a galactic perspective the tree and I are whirling in almost the same place — regardless of whether I whisk from here on the earth to there on the earth by plane. I’m bound to the ground, ultimately. The tree just recognises that. People used to wear hats here. Everybody wore hats. Now it’s practically a ghost town except for pensioners and welfare recipients. The tree’s children can’t have blown too far.

Spinning in the same spot on 360° × [−90°, +90°] = ∂(S²×[0,1]). γ torques and twists about the sphere but its length is exactly the same. Does the tree wish λ had summited a mountain at some point? Perhaps, but it would be blown down up there, and the ground is tough and nutritionless anyway. It’s suited to this life.

It bears the snow. It puts up with the heat.

I go inside after a couple hours out of doors, of course. But the tree spends all night, every night facing the elements. Maybe it likes being strong. Digging. Growing big. Drinking in sunlight like an athlete at a water fountain.

I’m more like a tumbleweed, rootless, quick to change course. Hanging out for a bit and then rolling—without announcing a goodbye. Untethered. Free, yet constrained by the same holonomy constraining the tree. One path, and one path only. The same width as all the others.

γ isn’t so much more interesting than λ. My γ is filled with magazines, airports, computer screens. Parties where people say more or less the same things, always indicating the hope that their gradient’s pointing in the right direction.

Advertisements

About isomorphismes

Argonaut: someone engaged in a dangerous but potentially rewarding adventure.
This entry was posted in Uncategorized and tagged , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s