[T]he point of introducing L^p spaces in the first place is … to exploit … Banach space. For instance, if one has |ƒ − g| = 0, one would like to conclude that ƒ = g. But because of the equivalence class in the way, one can only conclude that ƒ is equal to g almost everywhere.

The Lebesgue philosophy is analogous to the “noise-tolerant” philosophy in modern signal progressing. If one is receiving a signal (e.g. a television signal) from a noisy source (e.g. a television station in the presence of electrical interference), then any individual component of that signal (e.g. a pixel of the television image) may be corrupted. But as long as the total number of corrupted data points is negligible, one can still get a good enough idea of the image to do things like distinguish foreground from background, compute the area of an object, or the mean intensity, etc.

Terence Tao

If you’re thinking about points in Euclidean space, then yes — if the distance between them is nil, they are in the exact same spot and therefore the same point.

But abstract mathematics opens up more possibilities.

  • Like TV signals. Like 2-D images or 2-D × time video clips.
  • Like crime patterns, dinosaur paw prints, neuronal spike-trains, forged signatures, songs (1-D × time), trajectories, landscapes.
  • Like, any completenormedvector space. (= it’s thick + distance exists + addition exists + everything’s included = it’s a Banach space)

About isomorphismes

Argonaut: someone engaged in a dangerous but potentially rewarding adventure.
Quote | This entry was posted in Uncategorized and tagged , , , , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s